## Mechanism of the Reaction of NO and NH<sub>3</sub> on Vanadium Oxide Catalyst in the Presence of Oxygen under the Dilute Gas Condition

MAKOTO INOMATA, AKIRA MIYAMOTO, AND YUICHI MURAKAMI

Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

Received June 13, 1979; revised September 12, 1979

The NO-NH<sub>3</sub> reaction on vanadium oxide catalyst under the dilute gas condition was markedly accelerated by the addition of O<sub>2</sub>. The oxygen species responsible for the acceleration of the reaction has been found to be the V<sup>3+</sup>=O species on the catalyst; the rate of the NO-NH<sub>3</sub> reaction at a given O<sub>2</sub> concentration was in proportion to the amount of the V<sup>3+</sup>=O species in the catalyst. On the basis of the results of the kinetics of the reaction in the presence of O<sub>2</sub>, the adsorptions of NH<sub>3</sub> and NO, and the reaction of adsorbed NH<sub>3</sub> and gaseous NO, the mechanism of the NO-NH<sub>3</sub> reaction on vanadium oxide catalyst under the dilute gas condition has been established as follows: NH<sub>3</sub> is strongly adsorbed adjacent to V<sup>3+</sup>=O as NH<sub>4</sub><sup>+</sup> (ad), whereas, NO is hardly adsorbed on the catalyst. Then, a gaseous NO reacts with the adsorbed NH<sub>3</sub>, i.e., NH<sub>4</sub><sup>+</sup> (ad), to form N<sub>2</sub>, H<sub>2</sub>O, and V-OH. The V-OH species is reoxidized to V<sup>3+</sup>=O by either gaseous O<sub>2</sub> or bulk V<sup>3+</sup>=O species. The rate of the NO-NH<sub>3</sub> reaction in the presence of O<sub>2</sub> has been proven to agree with that calculated by using the transition state theory together with the above-mentioned mechanism.

#### **INTRODUCTION**

Attention is focused on the catalytic reduction of nitric oxide with ammonia (the NO-NH<sub>3</sub> reaction) from the environmental point of view. Detailed mechanisms of the reaction have also been proposed for various catalysts, such as precious metals (1 -4), metal oxides (5-7), and zeolites (8-10). However, these mechanisms have been mainly obtained by using the closed gas circulating reaction technique coupled with the tracer technique or infrared measurements. On the other hand, in the industrial process, the flow reaction technique is employed under the dilute gas condition. This condition is significantly different from that in the closed gas circulating reaction technique. Although the mechanisms obtained by using the closed gas circulating reaction technique give valuable information on the reaction under the dilute gas condition employed in the industrial process, when applying the mechanisms to the reaction under the dilute gas condition, care must be taken to the difference in the experimental conditions, especially when the gaseous oxygen is concerned in the reaction. This is because, for instance, it is clear from the kinetic data of Bodenstein (11) that the oxidation of NO by  $O_2$  in the gas phase NO +  $1/2O_2 \rightarrow NO_2$ , takes place readily under the experimental condition using the closed gas circulating reaction technique, where concentrations of reactants are usually several tens Torr and the reaction time is around a few minutes or longer. On the other hand, according to the data of Bodenstein (11), the oxidation of NO by  $O_2$  in the gas phase can hardly occur under the dilute gas condition where concentration of NO is lower than 1000 ppm and the residence time in the flow reactor is usually shorter than 0.1 sec.

Vanadium oxide catalyst is used in practice as one of the best catalysts for the NO-NH<sub>3</sub> reaction, because of its high activity at a lower temperature and of its high resistance to the poisoning by  $SO_x$ . Furthermore, under the dilute gas condition, it is well known that the rate of the reaction on vanadium oxide catalyst is much accelerated by the addition of oxygen (12-14). Concerning the mechanism of the reaction of  $V_2O_5$ , Takagi et al. (7) proposed the following mechanism by using the closed gas circulating reaction technique:  $NO_2$ (ad), produced by the reaction NO +  $1/2O_2$  $\rightarrow$  NO<sub>2</sub> (ad), reacts readily with adsorbed  $NH_3$ , i.e.,  $NH_4^+$  (ad), to form  $N_2$  and  $H_2O_1$ , where (ad) refers to an adsorbed species. On the other hand, by using the pulse reaction technique, Miyamoto et al. (15) found that the rate of the NO-NH<sub>3</sub> reaction on vanadium oxides with various oxidation states increases in proportion to the amount of the  $V^{5+}=0$  species on the catalyst. It is then evident that the oxygen species responsible for the acceleration of the reaction differs very much depending on the experimental methods. Therefore, it is of vital importance to investigate precisely the NO–NH<sub>3</sub> reaction under the dilute gas condition in order to establish the correct mechanism of the acceleration of the NO-NH<sub>3</sub> reaction by oxygen under the dilute gas condition (16).

In the present study, the authors investigated kinetically the details of the NO-NH<sub>3</sub> reaction under the dilute gas condition to propose the mechanism of the NO-NH<sub>3</sub> reaction in the presence of oxygen, which is applicable to the reaction in the industrial process. The validity of the mechanism was supported by the control experiments using pulse reaction technique, temperature-programmed desorption technique (TPD), and infrared *in situ* measurements.

#### NOMENCLATURE

- $A_{\omega}$  Absorbance at a given wave number,  $\omega$
- C<sub>NO</sub> Concentration of NO in the gas phase, mole/cm<sup>3</sup>, molecules/cm<sup>3</sup>, or ppm
- C<sub>NH3</sub> Concentration of NH<sub>3</sub> in the gas phase, mole/cm<sup>3</sup>, molecules/cm<sup>3</sup>, or ppm
- $C_{0_2}$  Concentration of  $O_2$  in the gas phase, molecules/cm<sup>3</sup> or percentage

- $C_s$  Number of V<sup>5+</sup>=O species on the surface of V<sub>2</sub>O<sub>5</sub>, molecules/cm<sup>2</sup>
- E Activation energy, cal/mole
- $F^{\neq}$  Partition function of the activated complex
- $F_{\rm A}$  Partition function of A species
- $f_{tr}^{A}$  Translational partition function of A species
- $f_{\rm rot}^{\rm A}$  Rotational partition function of A species
- $f_{vib}^{A}$  Vibrational partition function of A species
  - h Planck's constant, erg  $\cdot$  sec
  - k Reaction rate constant,  $cm^3/g \cdot sec$ or cm/sec
- $k_{\rm B}$  Boltzmann's constant, erg/deg
- R Gas constant, cal/deg  $\cdot$  mole
- r Reaction rate, mole/g  $\cdot$  sec or molecules/cm<sup>2</sup>  $\cdot$  sec
- T Absolute temperature, K

#### EXPERIMENTAL

 $V_2O_5$  was prepared by the thermal decomposition of ammonium metavanadate in the stream of oxygen at 500°C for 3 hr. The BET surface area of the catalyst was 5.4  $m^2/g$ . Kinetic studies were carried out with a conventional flow reactor under the dilute gas condition. Concentrations of reactants were varied ranging from 0 to 2000 ppm for both NO and NH<sub>3</sub>, and from 0 to 3% for O<sub>2</sub> with helium as a balance gas. The quantity of  $O_2$  as an impurity in NO, NH<sub>3</sub>, or He gas was negligibly small. Reaction temperature was varied from 180 to 330°C, at which the oxidation of  $NH_3$  was negligible. W/F was changed from 0.066 to 0.33 g-cat  $\cdot$  hr/mole. Product components, i.e.,  $N_2$  and  $N_2O$ , were analyzed with gas chromatography. The structures of vanadium oxide catalysts in the steady states of the NO-NH<sub>3</sub> reaction at various concentrations of O<sub>2</sub> were measured by using the following methods: The infrared measurements of the catalysts were made with KBr disk method on a Jasco-IR-G spectrometer. The ESR spectra of V<sup>4+</sup> ion were observed at X-band employing a JEOL ME 1X spectrometer to measure the quantity of  $V^{4+}$  ions in the

catlaysts. The IR measurements of the adsorptions of NO and  $NH_3$  and the reaction of both reactants were carried out *in situ*. Before the adsorptions, the disk of  $V_2O_5$ was heated *in situ* under vacuum at 400°C for 1 hr and then oxidized by 120 Torr of oxygen at 400°C for 1 hr. The TPD apparatus for the adsorptions of  $NH_3$  and NO was almost the same as that used by Cvetanovic and Amenomiya (17) and the temperature was raised at the rate of  $10^{\circ}C/min$ . The apparatus for the pulse experiments was similar to that described previously (15, 18).

#### **RESULTS AND DISCUSSION**

# Effect of the Concentration of $O_2$ on the Rate of the NO-NH<sub>3</sub> Reaction

Figure 1 shows the effect of the concentration of  $O_2$  on the steady-state rate of the NO-NH<sub>3</sub> reaction at 250°C under the dilute gas condition. The production rate of N<sub>2</sub> increased almost linearly with the concentration of  $O_2$  up to 1%, while that of N<sub>2</sub>O did not vary with the concentration of  $O_2$ . Figure 2 shows the results of the change in the conversion of NO in the NO-NH<sub>3</sub> reaction after the stoppage of  $O_2$  gas supply. The conversion decreased gradually at both 252 and 308°C, and attained steady-state values after 60-70 hr duration of the reaction, which was exactly equal to the conversions at  $C_{O_2} = 0\%$ . Considering the



FIG. 1. Effect of O<sub>2</sub> concentration on the production rates of N<sub>2</sub> and N<sub>2</sub>O at 250°C. Inlet concentrations of NO and NH<sub>3</sub> = 1000 ppm. O, N<sub>2</sub>.  $\Delta$ , N<sub>2</sub>O. W/F = 0.33 g · hr/mole.



FIG. 2. Changes in the conversion of NO in the NO-NH<sub>3</sub> reaction after the stoppage of O<sub>2</sub> gas supply. O, 308°C.  $\triangle$ , 252°C. At t < 0  $C_{0_2} = 1.5\%$ , whereas at  $t \ge 0$  $C_{0_2} = 0\%$ . Inlet concentrations of NO and NH<sub>3</sub> = 1000 ppm. W/F = 0.33 g · hr/mole.

above situation, the data shown in Fig. 1 were obtained 60-70 hr after the reaction began.

## Structure of Catalysts under the NO-NH<sub>3</sub> Reaction at Various Concentration of $O_2$

A catalyst in the NO–NH<sub>3</sub> steady-state reaction at a given concentration of O<sub>2</sub> was rapidly cooled to room temperature to measure the structure of the catalyst by using IR and ESR spectroscopies. Infrared spectra of the catalysts at various concentrations of O<sub>2</sub> are indicated in Fig. 3. The vanadium oxide catalysts in the steady states of the reaction above 1000 ppm of  $O_2$ gave the absorption bands at about 1020 and 825  $cm^{-1}$  which are assigned to the stretching vibration of  $V^{5+}=0$  and the coupled vibration of  $V^{5+}=O$  and V-O-V, respectively (15, 19). In the vanadium oxides in the steady states of the reaction below 1% of  $O_2$ , absorption bands at 990 and 910  $cm^{-1}$  were observed. These bands are assigned to the lattice vibrations of  $V_2O_4$  (20). IR spectrum of the vanadium oxide in the steady state of the NO-NH<sub>3</sub> reaction in the absence of O<sub>2</sub> was almost the same as that of  $V_2O_4$ . Furthermore, it is obvious from Fig. 3 that the oxidation state



FIG. 3. Infrared spectra of vanadium oxides in the steady state NO-NH<sub>3</sub> reaction at various concentrations of O<sub>2</sub> at 250°C.  $C_{O_2} = 2.10\%$  (1), 1.05% (2), 0.68% (3), 0.20% (4), 0.10% (5), and 0% (6).

of the catalyst above 1% of  $O_2$  was  $V_2O_5$ . The catalyst in the steady state of the reaction below 1% of O<sub>2</sub> was in an oxidation state between  $V_2O_5$  and  $V_2O_4$  depending on the concentration of  $O_2$ . Then, in order to know the quantitative change of the amount of the  $V^{5+}=0$  species in the catalyst with the concentration of  $O_{2}$ , values of  $A_{1020}/(A_{1020} + A_{910})$  and  $A_{825}/(A_{825})$  $+ A_{910}$ ) were calculated from Fig. 3, where  $A_{\omega}$  refers to absorbance at a given wave number,  $\omega$ . The relation between these relative absorbances and the concentration of  $O_2$  in the reaction is shown in Fig. 4. The amount of  $V^{5+}=0$  species represented by these quantities increases almost linearly with the concentration of  $O_2$  up to 1% of  $O_2$ , and attains the constant value above 1% of  $O_2$ , where the oxidation state of the catalyst is  $V_2O_5$ . In the vanadium oxide catalysts in the steady-state reaction where O<sub>2</sub> concentration was below 1%, ESR signal assignable to  $V^{4+}(g = 1.96)$  was observed and the relative intensity of the signal is indicated in Fig. 5 against the concentration of  $O_2$  in the reaction. As shown in Fig. 5, the quantity of  $V^{4+}$  in the catalyst decreased monotonically with increasing concentration of  $O_2$  up to 1% and above this concentration it reached zero.

## Oxygen Species Responsible for the Acceleration of the NO-NH<sub>3</sub> Reaction under the Dilute Gas Condition

As shown in Fig. 1, the NO-NH<sub>3</sub> reaction on vanadium oxide catalyst under the dilute gas condition is markedly accelerated by oxygen. Under the dilute gas condition using the flow technique, as mentioned above,  $O_2$  cannot oxidize NO to  $NO_2$  in the gas phase. According to our experiments, also, the catalytic oxidation of NO to NO<sub>2</sub> did not take place on vanadium oxide under the dilute gas condition. Namely, when 1000 ppm of NO and 1% of O<sub>2</sub> were introduced to the  $V_2O_5$  catalyst at 300°C by using the flow technique, NO<sub>2</sub> was not obtained as a product. Adsorbed oxygen species can be shown not to be responsible for the acceleration of the NO–NH<sub>3</sub> reaction under the dilute gas condition as follows: No adsorbed oxygen species, such as  $O_2^-$  or  $O^-$ , was detected on  $V_2O_5$  by either ESR or TPD measurement. Moreover, even if the catalyst surface were initially covered completely with adsorbed oxygen species, these species should be consumed by the NO-NH<sub>3</sub> reaction within 60 sec after the stoppage of  $O_2$  gas supply and the rate of the reaction should decrease abruptly,



FIG. 4. Relative absorbances in infrared spectra of vanadium oxides in the steady state NO-NH<sub>3</sub> reaction at various concentrations of O<sub>2</sub> at 250°C. O,  $A_{1020}/(A_{1020} + A_{910})$ .  $\Delta$ ,  $A_{925}/(A_{924} + A_{910})$ .



FIG. 5. Relative intensity of ESR signal at g = 1.96 for vanadium oxides in the steady state NO-NH<sub>3</sub> reaction at various concentrations of O<sub>2</sub> at 250°C.

contradictory to the experimental results shown in Fig. 2. Since the quantity of lattice oxygen of vanadium oxide catalyst is much more than that of adsorbed oxygen and the lattice oxygen of the catalyst can diffuse easily from bulk to surface, the results shown in Fig. 2 can satisfactorily be interpreted in terms of the acceleration by lattice oxygen. Furthermore, the good correlation between the data shown in Figs. 1 and 4 indicates that  $V^{5\pm}$  ospecies on the surface of the vanadium oxide is responsible for the acceleration of the NO-NH<sub>3</sub> reaction under the dilute gas condition. Namely, the following reactions can be proposed:

$$NO + NH_3 + V \longrightarrow N_2 + H_2O + V , \qquad (1)$$

$$OH \qquad O$$

$$2 V \xrightarrow{\text{gaseous } O_2 \text{ or bulk } V^{3+} = Q} 2 V + H_2O.$$
 (2)

According to this mechanism, when the  $O_2$ gas supply is stopped, the  $V^{5+}=0$  species on the surface is reproduced by Reaction (2) with the expense of bulk  $V^{5+}=0$  species, followed by the formation of  $V^{4+}$  ion in bulk. Therefore, the rate of the NO-NH<sub>3</sub> reaction can decrease gradually after the  $O_2$ gas supply is stopped, in accordance with the experiments shown in Fig. 2. According to the mechanism, also, the quantity of the V<sup>5+</sup>=O species should decrease completely after the long duration of the NO- $NH_3$  reaction in the absence of gaseous  $O_2$ and this exactly agrees with the experimental results. Namely, the quantity of  $V^{5+}=0$ species was confirmed to decrease gradually until all of the  $V^{5+}=O$  species were completely consumed (Figs. 3 and 4). Moreover, the total amount of the  $V^{5+}=0$ species consumed by the reaction was calculated to be nearly equal to the amount of oxygen necessary for the change from  $V_2O_5$ to  $V_2O_4$ . The validity of the mechanism can

also be supported by the results of the NO– NH<sub>3</sub> reaction on a given oxidation state of the vanadium oxide catalyst, i.e., from  $V_2O_4$  to  $V_2O_5$ , by the pulse reaction technique (15). Namely, the rate of the NO– NH<sub>3</sub> reaction on a catalyst with a given oxidation state increased linearly with the increasing amount of V<sup>5+</sup>==O species in the catalyst. This relation is similar to that derived from the data shown in Figs. 1 and 4.

### Kinetics of the NO-NH<sub>3</sub> Reaction in the Presence and Absence of Oxygen

The kinetics of the NO-NH<sub>3</sub> reaction were measured under the dilute gas condition at various concentrations of O<sub>2</sub>. When  $C_{02}$  was equal to 1.3%, as shown for example in Fig. 6, the rate of the NO-NH<sub>3</sub> reaction was first order with respect to  $C_{NO}$ , whereas it was zero order with respect to  $C_{NH_3}$ . The rate or the rate constant referred to below means that of NO disappearance.



FIG. 6. Kinetics of the NO-NH<sub>3</sub> reaction on the vanadium oxide catalyst at 250°C in the presence of oxygen. O,  $\oplus$ , N<sub>2</sub>.  $\triangle$ ,  $\blacktriangle$ , N<sub>2</sub>O.  $C_{02} = 1.3\%$ . Open symbols:  $C_{NH_3} = 1000$  ppm. Closed symbols:  $C_{NO} = 1000$  ppm.

The same relation as that shown in Fig. 6 was also obtained at temperatures between 206 and 313°C. Furthermore, the rate constant of the reaction, k, at  $C_{0_2} = 1.3\%$  was confirmed to satisfy the Arrhenius equation as shown in Fig. 7 with the activation energy equal to 11.6 kcal/mole. Namely, the rate of the reaction, r, at  $C_{0_2} = 1.3\%$  was given by the following equation:

$$r = k C_{NO}^{1} C_{NH_{3}}^{0}$$
  
= 1.29 × 10<sup>6</sup> exp(-11,600/RT)  
 $C_{NO}^{1} C_{NH_{3}}^{0}$  (mole/g · sec). (3)

Taking into account the specific surface area of  $V_2O_5$ , i.e., 5.4 m<sup>2</sup>/g-V<sub>2</sub>O<sub>5</sub>, the following expression is derived from Eq. (3):

$$r = 23.8 \exp(-11,600/RT)$$
  

$$C_{\rm NO}^{1} C_{\rm NH_{3}}^{0} \text{ (molecules/cm}^{2} \cdot \text{sec}). \quad (4)$$

Similarly, the rate of the NO-NH<sub>3</sub> reaction in the absence of O<sub>2</sub>, i.e.,  $C_{O_2} = 0\%$ , was given by the following equation:

$$r = 32.4 \exp(-16,600/RT)$$
  

$$C_{\rm NO}^{1} C_{\rm NH_{3}}^{0} \text{ (molecules/cm}^{2} \cdot \text{sec}). \quad (5)$$

From Eqs. (4) and (5), it can be noted that

the difference in the rate equation between the NO-NH<sub>3</sub> reaction in the presence of O<sub>2</sub> and that in the absence of O<sub>2</sub> results not from the frequency factor but from the activation energy. Furthermore, the rate equation, i.e., Eq. (4), suggests that the NO-NH<sub>3</sub> reaction on V<sup>5+</sup>=O, i.e., Reaction (1), is a reaction of a strongly adsorbed NH<sub>3</sub> and a hardly adsorbed NO, since the rate is zero order with respect to  $C_{\rm NH_3}$  and first order with respect to  $C_{\rm NO}$ .

### Adsorptions of $NH_3$ and NO on $V_2O_5$

Although the rate equation shown in Eq. (4) indicates that the reaction in the presence of  $O_2$  may be a reaction of a strongly adsorbed NH<sub>3</sub> and a hardly adsorbed NO with a  $V^{5+}=0$  species as the active site, this should be confirmed by the adsorption experiments of both reactants. Furthermore, the adsorbed forms of the components should be established in order to clarify the details of the reaction mechanism in the presence of O<sub>2</sub>. Temperatureprogrammed desorption experiments showed a single desorption peak of NH<sub>3</sub>, while no desorption peaks of NO were observed above room temperature, suggesting the validity of the above-mentioned inference. Furthermore, pulse chromatographic measurements of the adsorptions of NO and  $NH_3$  revealed that  $NH_3$  is strongly adsorbed whereas NO is hardly adsorbed



FIG. 7. Arrhenius plots of the rate constants, k, for the NO-NH<sub>3</sub> reaction in the presence and in the absence of oxygen.  $\bigcirc$ ,  $C_{0x} = 0\%$ .  $\triangle$ ,  $C_{0x} = 1.3\%$ .

on  $V_2O_5$  at 150°C (18). No absorption bands corresponding to NO, such as NO<sup>+</sup>(ad), NO<sup>-</sup>(ad), and NO<sub>2</sub>(ad) species, were observed in the infrared spectra when NO gas was introduced onto  $V_2O_5$  at temperature higher than room temperature. On the other hand, an adsorbed NH<sub>3</sub> species was clearly observed in the infrared spectra as follows: The infrared spectra of adsorbed NH<sub>3</sub> on  $V_2O_5$ , as shown in Fig. 8, indicate a band at 1410  $cm^{-1}$  assignable to the deformation vibration of  $NH_4^+$  (7). Consequently, it is considered that NH<sub>3</sub> is adsorbed on the surface of  $V_2O_5$  as  $NH_4^+(ad)$ . Here, we define the adsorption site of NH<sub>3</sub> (Brönsted acid site) on  $V_2O_5$  as  $V_s$ -OH. Since the quantity of NH<sub>3</sub> chemically adsorbed on  $V_2O_5$  was not affected by the oxidation or the evacuation treatment of  $V_2O_5$  at 400-500°C before the adsorption, the adsorption site of  $NH_3$ , i.e.,  $V_s$ -OH, seems to be strongly held on the surface and to be stable for the oxidation by  $O_2$ . It can be concluded that  $NH_3$  is strongly adsorbed as  $NH_4^+(ad)$ according to the following reaction;

while NO is hardly adsorbed on  $V_2O_5$ .



FIG. 8. Infrared spectra of adsorbed ammonia measured at room temperature before and after the reaction with NO. (1) Background. (2) After the adsorption of  $NH_3(60 \text{ Torr})$  followed by the evacuation for 30 min at room temperature. (3) After the reaction with NO(45 Torr) for 15 min at 100°C.

## Reaction of Adsorbed NH<sub>3</sub> with Gaseous NO

As mentioned above, NH<sub>3</sub> is strongly adsorbed on  $V_2O_5$  as  $NH_4^+(ad)$ . When NO gas was introduced onto the catalyst preadsorbed with NH<sub>3</sub>, the infrared band corresponding to NH<sub>4</sub><sup>+</sup>(ad) disappeared at 100°C and above, as shown in Fig. 8. Furthermore, the pulse experiments indicated that the introduction of NO pulse to  $V_2O_5$  preadsorbed with  $NH_3$  selectively produces  $N_2$ and H<sub>2</sub>O at 100°C and above. Moreover, when NO gas (1000 ppm) was introduced onto the  $V_2O_5$  catalyst treated with  $NH_3$ (1000 ppm) using the flow reactor at 259 or 274°C, a considerable amount of N<sub>2</sub>, i.,e.,  $3.8 \times 10^{14}$  molecules/cm<sup>2</sup>-V<sub>2</sub>O<sub>5</sub>, was produced. On the other hand, when NH<sub>3</sub> gas (1000 ppm) was introduced onto the catalyst treated with NO gas (1000 ppm) in the absence or in the presence of  $O_2$  (1%) at 250°C,  $N_2$  was not obtained at all as a reaction product, excluding a mechanism through a strongly adsorbed NO or NO<sub>2</sub> species (7, 16). These results indicate that the strongly adsorbed NH<sub>3</sub> species on  $V_2O_5$ , i.e.,  $NH_4^+(ad)$ , can react readily with a gaseous NO to form N<sub>2</sub> and H<sub>2</sub>O, suggesting the Eley-Rideal mechanism.

## Mechanism of the NO- $NH_3$ Reaction in the Presence of $O_2$ under the Dilute Gas Condition

As mentioned above, the kinetics of the NO-NH<sub>3</sub> reaction on vanadium oxide catalyst in the presence of O<sub>2</sub> suggests that the reaction on V<sub>2</sub>O<sub>5</sub> is a reaction of strongly adsorbed NH<sub>3</sub> and hardly adsorbed NO. The infrared, TPD, and pulse experiments on the adsorptions of both NH<sub>3</sub> and NO, and on the reaction of both components support the mechanism, and, furthermore, indicate that the strongly adsorbed NH<sub>3</sub> species is an NH<sub>4</sub><sup>+</sup>(ad) adsorbed on V<sub>s</sub>-OH site on the catalyst. Moreover, as indicated in Reaction (1), V<sup>5+</sup>=O species on the surface of the catalyst plays an essential role as the active site for the reaction in the

presence of  $O_2$ . Therefore, a further detailed mechanism of Reaction (1) can be proposed as shown in Fig. 9 [Reactions (7) and (8) are defined in Fig. 9]. Namely, at first, NH<sub>3</sub> is strongly adsorbed adjacent to  $V^{5+}$  = O as  $NH_4^+$  (ad), according to Reaction (7). Then, a gaseous NO reacts with the absorbed NH<sub>3</sub> to form N<sub>2</sub>, H<sub>2</sub>O, and V-OH, according to Reaction (8), that is, the Eley-Rideal mechanism. The V-OH species produced by Reaction (8) can be reoxidized to  $V^{5+}=O$  by either gaseous  $O_2$  or bulk V<sup>5+</sup>=O species as indicated in Reaction (2), while the adsorption site of  $NH_{3}$ , i.e., V<sub>s</sub>-OH, remains unreacted in the atmosphere of  $O_2$  as proven above. Apparently, it seems artificial to distinguish between  $V_s$ -OH and V-OH species on the surface. Taking into consideration the crystal structure of  $V_2O_5$  (21), however, the difference in behaviors of both V–OH and V<sub>s</sub>–OH species can reasonably be understood as follows: If V<sub>s</sub>–OH species is assumed to be a site such as Species II in Fig. 10, the V<sub>s</sub>–OH species cannot be oxidized to V<sup>5+</sup>=O from the structural point of view, whereas, V<sup>5+</sup>=O species, i.e., Species I in Fig. 10, can be reduced to V–OH and the V–OH species formed can then be reoxidized to V<sup>5+</sup>=O.

## Application of the Transition Sate Theory to the Rate of the $NO-NH_3$ Reaction in the Presence of $O_2$

Since the rate of the NO-NH<sub>3</sub> reaction at  $C_{0_2} = 1.3\%$  is limited by Reaction (8) in Fig. 9, the rate under this condition is formulated by using the transition state theory (22) coupled with the reaction model of Reaction (8) as follows:

$$r = \frac{k_{\rm B}T}{h} C_{\rm s} \frac{F^{\neq}}{F_{\rm NO}F_{\rm NH_4}^{+}(\rm ad)} \exp(-E/RT) C_{\rm NO}^{1} C_{\rm NH_3}^{0}.$$
(9)

It has been assumed in Eq. (9) that the adsorbed  $NH_3$ , i.e.,  $NH_4^+(ad)$ , is strongly held adjacent to  $V^{5+}=O$  and, therefore, immobile on the surface. Thus, the transla-

tional and rotational partition functions of both the adsorbed  $NH_3$  and the activated complex are considered to be unity. Consequently, the following relations can be obtained:

$$F^{\neq} = f_{\rm vib}^{\neq}, \qquad (10)$$

$$F_{\rm NH4}^{+}(\rm ad) = 1.$$
 (11)

Furthermore, the number of  $V^{5+}=0$  species on the surface,  $C_s$ , is given (23) by Eq. (12).

$$C_{\rm s} = 2.45 \times 10^{14}$$
  
molecules/cm<sup>2</sup>-V<sub>2</sub>O<sub>5</sub>. (12)

Substituting Eqs. (10)-(12) into Eq. (9), we get the following equation:

Comparing Eq. (13) with Eq. (4),  $f_{vib}^{\neq}$  is given as follows:



FIG. 9. Mechanism of the NO-NH<sub>3</sub> reaction on the vanadium oxide catalyst in the presence of oxygen.



FIG. 10. Model of the surface structure of  $V_2O_5$  catalyst. Species I,  $V^{3+}$ =O species. Species II,  $V_s$ -OH species.

$$f_{\rm vib}^{\neq} = 7.0 \times 10^2.$$
 (14)

This value seems to be reasonable, since the activated complex of Reaction (8) in Fig. 9 contains many loose bonds and, according to Herschbach and Johnston (24), and Laidler (22), such a large value of  $f_{vib}^{\pm}$  can be expected for a loose complex comprised of many weak bonds. The alternative mechanism where NH<sub>4</sub><sup>+</sup>(ad) and/or oxygen species, i.e., V<sup>5+</sup>=O, can move on the surface in the initial state of Reaction (8) is rejected since the rate calculated on the basis of the latter mechanism gives a much smaller value than the experimental rate shown in Eq. (4).

As shown in Eq. (5), the rate equation of the NO-NH<sub>3</sub> reaction in the absence of  $O_2$ is almost the same as that in the presence of  $O_2$ , that is, Eq. (4), except the activation energy (16.6 kcal/mole) higher than that in the presence of  $O_2$  (11.6 kcal/mole). This gives an important suggestion on the mechanism of the reaction in the absence of  $O_2$ . Since the NO-NH<sub>3</sub> reaction in the absence of  $O_2$  is composed of several elementary steps, the detailed mechanism under the condition will be reported in a subsequent paper with additional experimental data to establish the mechanism.

#### REFERENCES

- Otto, K., Shelef, M., and Kummer, J. T., J. Phys. Chem. 74, 2690 (1970).
- Otto, K., Shelef, M., and Kummer, J. T., J. Phys. Chem. 75, 875 (1971).
- 3. Otto, K., and Shelef, M., J. Phys. Chem. 76, 37 (1972).
- 4. Otto, K., and Shelef, M., J. Phys. Chem. 85, 308 (1973).
- Niiyama, H., Ebitani, A., and Echigoya, E., J. Catal. 48, 194 (1977).
- Niiyama, H., Ookawa, T., and Echigoya, E., Nippon Kagaku Kaishi 1975, 1871.
- Takagi, M., Kawai, T., Soma, M., Onishi, T., and Tamaru, K., J. Catal. 50, 441 (1977).
- 8. Windhorst, K. A., and Lunsford, J. H., J. Amer. Chem. Soc. 97, 1407 (1975).
- Seiyama, T., Arakawa, T., Matsuda, T., Takita, Y., and Yamazoe, N., J. Catal. 48, 1 (1977).
- Mizumoto, M., Yamazoe, N., and Seiyama, T., J. Catal. 55, 119 (1978).
- 11. Bodenstein, M., Z. Elektrochem. 24, 183 (1918).
- Todo, N., Kurita, M., Hagiwara, H., Ueno, H., and Sato, T., Preprints of Papers for the Japan-USA Seminar on Catalytic NO<sub>x</sub> Reactions, 3-1 (1975).
- Bauerle, G. L., Wu, S. C., and Nobe, K., Ind. Eng. Chem. Prod. Res. Dev. 14, 268 (1975).
- 14. Bauerle, G. L., Wu, S. C., and Nobe, K., Ind. Eng. Chem. Prod. Res. Dev. 17, 117 (1978).
- Miyamoto, A., Yamazaki, Y., and Murakami, Y., Nippon Kagaku Kaishi 1977, 619.
- Miyamoto, A., Inomata, M., Yamazaki, Y., and Murakami, Y., J. Catal. 57, 526 (1979).
- Cvetanovic, R. J., and Amenomiya, Y., Adv. Catal. 17, 103 (1967).
- Miyamoto, A., Yamazaki, Y., Hattori, T., and Murakami, Y., unpublished data.
- 19. Yoshida, S., Shokubai 10, 90 (1968).
- Frederickson, L. D., and Hansen, D. M., Anal. Chem. 35, 818 (1963).
- 21. Byström, A., Wilhelmi, K. A., and Brotzen, O., Acta Chem. Scand. 4, 1119 (1950).
- Laidler, K. J., in "Catalysis" (P. H. Emmett, Ed.), Vol. 1, Chapt. 5. Reinhold, New York, 1954.
- 23. Miyamoto, A., Yamazaki, Y., Inomata, M., and Murakami, Y., Chem. Lett. 1978, 1355.
- Herschbach, D. R., and Johnston, H. S., J. Chem. Phys. 25, 736 (1956).